Mathematical Foundations in AI Integration

1. Optimization Algorithms

VirtualDaos utilizes optimization algorithms such as Gradient Descent to refine asset allocation and improve decision-making:

θt+1=θtηf(θt)\theta^{t+1} = \theta^t - \eta \nabla f(\theta^t)

Where:

  • θ : Model parameters

  • η : Learning rate

  • f(θ) : Objective function

2. Neural Network Modeling

Neural networks are applied to analyze on-chain and off-chain data:

y=σ(Wx+b)y = \sigma(Wx + b)

Where:

  • y : Output prediction

  • σ : Activation function

  • W : Weight matrix

  • x : Input vector

  • b : Bias term

3. Markov Decision Processes (MDP)

For decision-making, VirtualDaos applies MDP to model governance dynamics:

V(s)=maxasP(ss,a)[R(s,a,s)+γV(s)]V(s) = \max_a \sum_{s'} P(s'|s, a) \left[R(s, a, s') + \gamma V(s')\right]

Where:

  • V(s) : Value of state s

  • P(s′∣s,a) : Transition probability

  • R(s,a,s ′) : Reward function

  • γ : Discount factor

4. Game Theory

Game theory underpins DAO collaboration and voting dynamics, applying Nash Equilibrium concepts:

NE: i,ui(si,si)ui(si,si)\text{NE: } \forall i, u_i(s_i^*, s_{-i}^*) \geq u_i(s_i, s_{-i}^*)

Where:

ui:Utility function of participant i.si:Optimal strategy for participant i.u_i : \text{Utility function of participant } i. \newline s_i^* : \text{Optimal strategy for participant } i.

Last updated